Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Trends Biotechnol ; 41(3): 264-266, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2268386

RESUMEN

Food security is threatened by rising global population and effects of climate change. Most of our calories come from a few crops that are difficult to improve. Lowe et al. developed a plant transformation approach enabling crop genetic engineering that could provide a route to a future with greater food security.


Asunto(s)
Abastecimiento de Alimentos , Ingeniería Genética , Productos Agrícolas/genética , Cambio Climático , Transformación Genética
2.
FEBS Open Bio ; 13(3): 478-489, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2254876

RESUMEN

Cell-cell fusion involves the fusion of somatic cells into a single hybrid cell. It is not only a physiological process but also an important cell engineering technology which can be applied to various fields, such as regenerative medicine, antibody engineering, genetic engineering, and cancer therapy. There are three major methods of cell fusion: electrical cell fusion, polyethylene glycol (PEG) cell fusion, and virus-mediated cell fusion. Although PEG cell fusion is the most economical approach and does not require expensive instrumentation, it has a poor fusion rate and induces a high rate of cell cytotoxicity. To improve the fusion rate of the PEG method, we combined it with the pyro-drive jet injector (PJI). PJI provides instant pressure instead of cell agitation to increase the probability of cell-to-cell contact and shorten the distance between cells in the process of cell fusion. Here, we report that this improved fusion method not only decreased cell cytotoxicity during the fusion process, but also increased fusion rate compared with the conventional PEG method. Furthermore, we tested the functionality of cells fused using the PJI-PEG method and found them to be comparable to those fused using the conventional PEG method in terms of their application for dendritic cell (DC)-tumor cell fusion vaccine production; in addition, the PJI-PEG method demonstrated excellent performance in hybridoma cell preparation. Taken together, our data indicate that this method improves cell fusion efficiency as compared to the PEG method and thus has the potential for use in various applications that require cell fusion technology.


Asunto(s)
Ingeniería Genética , Polietilenglicoles , Polietilenglicoles/farmacología , Fusión Celular
4.
Proc Natl Acad Sci U S A ; 119(31): e2205412119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1947766

RESUMEN

Camelid single-domain antibodies, also known as nanobodies, can be readily isolated from naïve libraries for specific targets but often bind too weakly to their targets to be immediately useful. Laboratory-based genetic engineering methods to enhance their affinity, termed maturation, can deliver useful reagents for different areas of biology and potentially medicine. Using the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and a naïve library, we generated closely related nanobodies with micromolar to nanomolar binding affinities. By analyzing the structure-activity relationship using X-ray crystallography, cryoelectron microscopy, and biophysical methods, we observed that higher conformational entropy losses in the formation of the spike protein-nanobody complex are associated with tighter binding. To investigate this, we generated structural ensembles of the different complexes from electron microscopy maps and correlated the conformational fluctuations with binding affinity. This insight guided the engineering of a nanobody with improved affinity for the spike protein.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Afinidad de Anticuerpos , SARS-CoV-2 , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Afinidad de Anticuerpos/genética , Microscopía por Crioelectrón , Entropía , Ingeniería Genética , Humanos , Unión Proteica , Dominios Proteicos , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
5.
J Immunol Methods ; 500: 113182, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1768318

RESUMEN

Serology tests for SARS-CoV-2 have proven to be important tools to fight against the COVID-19 pandemic. These serological tests can be used in low-income and remote areas for patient contact tracing, epidemiologic studies and vaccine efficacy evaluations. In this study, we used a semi-stable mammalian episomal expression system to produce high quantities of the receptor-binding domain-RBD of SARS-CoV-2 in a simple and very economical way. The recombinant antigen was tested in an in-house IgG ELISA for COVID-19 with a panel of human sera. A performance comparison of this serology test with a commercial test based on the full-length spike protein showed 100% of concordance between tests. Thus, this serological test can be an attractive and inexpensive option in scenarios of limited resources to face the COVID-19 pandemic.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/economía , Prueba Serológica para COVID-19/economía , Costos y Análisis de Costo , Ensayo de Inmunoadsorción Enzimática , Ingeniería Genética , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Glicoproteína de la Espiga del Coronavirus/genética
6.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1765731

RESUMEN

Crop breeding has mainly been focused on increasing productivity, either directly or by decreasing the losses caused by biotic and abiotic stresses (that is, incorporating resistance to diseases and enhancing tolerance to adverse conditions, respectively). Quite the opposite, little attention has been paid to improve the nutritional value of crops. It has not been until recently that crop biofortification has become an objective within breeding programs, through either conventional methods or genetic engineering. There are many steps along this long path, from the initial evaluation of germplasm for the content of nutrients and health-promoting compounds to the development of biofortified varieties, with the available and future genomic tools assisting scientists and breeders in reaching their objectives as well as speeding up the process. This review offers a compendium of the genomic technologies used to explore and create biodiversity, to associate the traits of interest to the genome, and to transfer the genomic regions responsible for the desirable characteristics into potential new varieties. Finally, a glimpse of future perspectives and challenges in this emerging area is offered by taking the present scenario and the slow progress of the regulatory framework as the starting point.


Asunto(s)
Biofortificación , Fitomejoramiento , Biofortificación/métodos , Productos Agrícolas/genética , Ingeniería Genética/métodos , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética
7.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1736951

RESUMEN

Throughout history, nature has been acknowledged for being a primordial source of various bioactive molecules in which human macular carotenoids are gaining significant attention. Among 750 natural carotenoids, lutein, zeaxanthin and their oxidative metabolites are selectively accumulated in the macular region of living beings. Due to their vast applications in food, feed, pharmaceutical and nutraceuticals industries, the global market of lutein and zeaxanthin is continuously expanding but chemical synthesis, extraction and purification of these compounds from their natural repertoire e.g., plants, is somewhat costly and technically challenging. In this regard microbial as well as microalgal carotenoids are considered as an attractive alternative to aforementioned challenges. Through the techniques of genetic engineering and gene-editing tools like CRISPR/Cas9, the overproduction of lutein and zeaxanthin in microorganisms can be achieved but the commercial scale applications of such procedures needs to be done. Moreover, these carotenoids are highly unstable and susceptible to thermal and oxidative degradation. Therefore, esterification of these xanthophylls and microencapsulation with appropriate wall materials can increase their shelf-life and enhance their application in food industry. With their potent antioxidant activities, these carotenoids are emerging as molecules of vital importance in chronic degenerative, malignancies and antiviral diseases. Therefore, more research needs to be done to further expand the applications of lutein and zeaxanthin.


Asunto(s)
Antioxidantes/química , Luteína/química , Zeaxantinas/química , Factores Biológicos/química , Composición de Medicamentos , Estabilidad de Medicamentos , Esterificación , Edición Génica , Ingeniería Genética , Humanos , Mácula Lútea/química
8.
J Healthc Eng ; 2022: 9311052, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1723969

RESUMEN

Big data platforms can effectively analyze the data and maximize the value of the data by mining the text, digital, video, and image data in various industries. The combination of big data and various industries has brought great changes to the development of the industry. Providing data according to demand can save more time and promote the development of the industry. SARS-CoV-2 (COVID-19) is sweeping across the world, and it has spread to several countries and regions. Human infections have been reported all around the world. Due to the unique characteristics of COVID-19, no specific medicine is available yet to cure patients before the successful research and development of vaccines. Hence, it is of important significance to research and develop vaccines. Guided by the biological characteristics of COVID-19 and the philosophy of synthetic biology, this study reviews the developed genetic engineering vaccines.


Asunto(s)
COVID-19 , Vacunas , Macrodatos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Ingeniería Genética , Humanos , SARS-CoV-2
9.
Plant Biotechnol J ; 20(2): 360-373, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1621953

RESUMEN

In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over 30 years old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the 'mini-synplastome'. The mini-synplastome was inspired by dinoflagellate plastome organization, which is comprised of numerous minicircles residing in the plastid instead of a single organellar genome molecule. The first mini-synplastome in plants was developed in vitro to meet the following criteria: (i) episomal replication in plastids; (ii) facile cloning; (iii) predictable transgene expression in plastids; (iv) non-integration of vector sequences into the endogenous plastome; and (v) autonomous persistence in the plant over generations in the absence of exogenous selection pressure. Mini-synplastomes are anticipated to revolutionize chloroplast biotechnology, enable facile marker-free plastid engineering, and provide an unparalleled platform for one-step metabolic engineering in plants.


Asunto(s)
Ingeniería Genética , Plastidios , Ingeniería Metabólica , Plantas/genética , Plastidios/genética , Biología Sintética , Transgenes
10.
Front Immunol ; 12: 795741, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1581316

RESUMEN

Glycan-masking the vaccine antigen by mutating the undesired antigenic sites with an additional N-linked glycosylation motif can refocus B-cell responses to desired epitopes, without affecting the antigen's overall-folded structure. This study examined the impact of glycan-masking mutants of the N-terminal domain (NTD) and receptor-binding domain (RBD) of SARS-CoV-2, and found that the antigenic design of the S protein increases the neutralizing antibody titers against the Wuhan-Hu-1 ancestral strain and the recently emerged SARS-CoV-2 variants Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). Our results demonstrated that the use of glycan-masking Ad-S-R158N/Y160T in the NTD elicited a 2.8-fold, 6.5-fold, and 4.6-fold increase in the IC-50 NT titer against the Alpha (B.1.1.7), Beta (B.1.351) and Delta (B.1.617.2) variants, respectively. Glycan-masking of Ad-S-D428N in the RBD resulted in a 3.0-fold and 2.0-fold increase in the IC-50 neutralization titer against the Alpha (B.1.1.7) and Beta (B.1.351) variants, respectively. The use of glycan-masking in Ad-S-R158N/Y160T and Ad-S-D428N antigen design may help develop universal COVID-19 vaccines against current and future emerging SARS-CoV-2 variants.


Asunto(s)
Antígenos Virales/inmunología , COVID-19/inmunología , Epítopos/inmunología , Dominios y Motivos de Interacción de Proteínas/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adenoviridae/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Femenino , Ingeniería Genética , Vectores Genéticos/genética , Humanos , Inmunización , Ratones , Pruebas de Neutralización , Polisacáridos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Relación Estructura-Actividad
11.
J Virol ; 96(3): e0183721, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1546443

RESUMEN

Research activities with infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are currently permitted only under biosafety level 3 (BSL3) containment. Here, we report the development of a single-cycle infectious SARS-CoV-2 virus replicon particle (VRP) system with a luciferase and green fluorescent protein (GFP) dual reporter that can be safely handled in BSL2 laboratories to study SARS-CoV-2 biology. The spike (S) gene of SARS-CoV-2 encodes the envelope glycoprotein, which is essential for mediating infection of new host cells. Through deletion and replacement of this essential S gene with a luciferase and GFP dual reporter, we have generated a conditional SARS-CoV-2 mutant (ΔS-VRP) that produces infectious particles only in cells expressing a viral envelope glycoprotein of choice. Interestingly, we observed more efficient production of infectious particles in cells expressing vesicular stomatitis virus (VSV) glycoprotein G [ΔS-VRP(G)] than in cells expressing other viral glycoproteins, including S. We confirmed that infection from ΔS-VRP(G) is limited to a single round and can be neutralized by anti-VSV serum. In our studies with ΔS-VRP(G), we observed robust expression of both luciferase and GFP reporters in various human and murine cell types, demonstrating that a broad variety of cells can support intracellular replication of SARS-CoV-2. In addition, treatment of ΔS-VRP(G)-infected cells with either of the anti-CoV drugs remdesivir (nucleoside analog) and GC376 (CoV 3CL protease inhibitor) resulted in a robust decrease in both luciferase and GFP expression in a drug dose- and cell-type-dependent manner. Taken together, our findings show that we have developed a single-cycle infectious SARS-CoV-2 VRP system that serves as a versatile platform to study SARS-CoV-2 intracellular biology and to perform high-throughput screening of antiviral drugs under BSL2 containment. IMPORTANCE Due to the highly contagious nature of SARS-CoV-2 and the lack of immunity in the human population, research on SARS-CoV-2 has been restricted to biosafety level 3 laboratories. This has greatly limited participation of the broader scientific community in SARS-CoV-2 research and thus has hindered the development of vaccines and antiviral drugs. By deleting the essential spike gene in the viral genome, we have developed a conditional mutant of SARS-CoV-2 with luciferase and fluorescent reporters, which can be safely used under biosafety level 2 conditions. Our single-cycle infectious SARS-CoV-2 virus replicon system can serve as a versatile platform to study SARS-CoV-2 intracellular biology and to perform high-throughput screening of antiviral drugs under BSL2 containment.


Asunto(s)
Ingeniería Genética , Recombinación Genética , Replicón , SARS-CoV-2/genética , COVID-19/virología , Técnicas de Cultivo de Célula , Línea Celular , Contención de Riesgos Biológicos/normas , Genes Reporteros , Humanos , Laboratorios/normas , Proteínas Virales/genética , Replicación Viral
12.
J Immunol Methods ; 500: 113195, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1536656

RESUMEN

COVID-19 pandemic poses a serious threat to human health; it has completely disrupted global stability, making vaccine development an important goal to achieve. Monoclonal antibodies play an important role in subunit vaccines strategies. In this work, nine murine MAbs against the RBD of the SARS-CoV-2 spike protein were obtained by hybridoma technology. Characterization of purified antibodies demonstrated that five of them have affinities in the order of 108 L/mol. Six MAbs showed specific recognition of different recombinant RBD-S antigens in solution. Studies of the additivity index of anti-RBD antibodies, by using a novel procedure to determine the additivity cut point, showed recognition of at least five different epitopes. The MAbs CBSSRBD-S.11 and CBSSRBD-S.8 revealed significant neutralizing capacity against SARS-CoV-2 in an ACE2-RBD binding inhibition assay (IC50 = 85.5pM and IC50 = 122.7pM, respectively) and in a virus neutralizing test with intact SARS-CoV-2 (VN50 = 0.552 nM and VN50 = 4.854 nM, respectively) when D614G strain was used to infect Vero cells. Also CBSSRBD-S.11 neutralized the SARS-CoV-2 strains Alpha and Beta: VN50 = 0.707 nM and VN50 = 0.132 nM, respectively. The high affinity CBSSRBD-S.8 and CBSSRBD-S.7 recognized different epitopes, so they are suitable for the development of a sandwich ELISA to quantitate RBD-S recombinant antigens in biomanufacturing processes, as well as in pharmacokinetic studies in clinical and preclinical trials.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Vacunas contra la COVID-19/inmunología , COVID-19/diagnóstico , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/genética , COVID-19/inmunología , Vacunas contra la COVID-19/genética , Ensayos Clínicos como Asunto , Femenino , Ingeniería Genética , Humanos , Ratones , Ratones Endogámicos BALB C , Dominios y Motivos de Interacción de Proteínas/genética , Desarrollo de Vacunas , Vacunas de Subunidad/genética
13.
Viruses ; 13(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1481009

RESUMEN

The livestock industry is constantly threatened by viral disease outbreaks, including infections with zoonotic potential. While preventive vaccination is frequently applied, disease control and eradication also depend on strict biosecurity measures. Clustered regularly interspaced palindromic repeats (CRISPR) and associated proteins (Cas) have been repurposed as genome editors to induce targeted double-strand breaks at almost any location in the genome. Thus, CRISPR/Cas genome editors can also be utilized to generate disease-resistant or resilient livestock, develop vaccines, and further understand virus-host interactions. Genes of interest in animals and viruses can be targeted to understand their functions during infection. Furthermore, transgenic animals expressing CRISPR/Cas can be generated to target the viral genome upon infection. Genetically modified livestock can thereby reduce disease outbreaks and decrease zoonotic threats.


Asunto(s)
Edición Génica/métodos , Ganado/virología , Virus/genética , Crianza de Animales Domésticos/métodos , Animales , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ingeniería Genética , Interacciones Microbiota-Huesped/genética , Virosis/prevención & control , Virus/patogenicidad
15.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1370748

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 4 million humans globally, but there is no bona fide Food and Drug Administration-approved drug-like molecule to impede the COVID-19 pandemic. The sluggish pace of traditional therapeutic discovery is poorly suited to producing targeted treatments against rapidly evolving viruses. Here, we used an affinity-based screen of 4 billion DNA-encoded molecules en masse to identify a potent class of virus-specific inhibitors of the SARS-CoV-2 main protease (Mpro) without extensive and time-consuming medicinal chemistry. CDD-1714, the initial three-building-block screening hit (molecular weight [MW] = 542.5 g/mol), was a potent inhibitor (inhibition constant [Ki] = 20 nM). CDD-1713, a smaller two-building-block analog (MW = 353.3 g/mol) of CDD-1714, is a reversible covalent inhibitor of Mpro (Ki = 45 nM) that binds in the protease pocket, has specificity over human proteases, and shows in vitro efficacy in a SARS-CoV-2 infectivity model. Subsequently, key regions of CDD-1713 that were necessary for inhibitory activity were identified and a potent (Ki = 37 nM), smaller (MW = 323.4 g/mol), and metabolically more stable analog (CDD-1976) was generated. Thus, screening of DNA-encoded chemical libraries can accelerate the discovery of efficacious drug-like inhibitors of emerging viral disease targets.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/genética , Descubrimiento de Drogas/métodos , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Animales , COVID-19/virología , Células Cultivadas , Proteasas 3C de Coronavirus/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Ingeniería Genética , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , SARS-CoV-2/metabolismo , Relación Estructura-Actividad , Replicación Viral , Tratamiento Farmacológico de COVID-19
16.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1369767

RESUMEN

According to Darwin's theory, endless evolution leads to a revolution. One such example is the Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas system, an adaptive immunity system in most archaea and many bacteria. Gene editing technology possesses a crucial potential to dramatically impact miscellaneous areas of life, and CRISPR-Cas represents the most suitable strategy. The system has ignited a revolution in the field of genetic engineering. The ease, precision, affordability of this system is akin to a Midas touch for researchers editing genomes. Undoubtedly, the applications of this system are endless. The CRISPR-Cas system is extensively employed in the treatment of infectious and genetic diseases, in metabolic disorders, in curing cancer, in developing sustainable methods for fuel production and chemicals, in improving the quality and quantity of food crops, and thus in catering to global food demands. Future applications of CRISPR-Cas will provide benefits for everyone and will save countless lives. The technology is evolving rapidly; therefore, an overview of continuous improvement is important. In this review, we aim to elucidate the current state of the CRISPR-Cas revolution in a tailor-made format from its discovery to exciting breakthroughs at the application level and further upcoming trends related to opportunities and challenges including ethical concerns.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Ingeniería Genética/métodos , Animales , Archaea/metabolismo , Bacterias/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Productos Agrícolas/genética , Ingeniería Genética/historia , Genoma , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Ganado
17.
Methods Mol Biol ; 2099: 137-159, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1292550

RESUMEN

Since 2012, monthly cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to cause severe respiratory disease that is fatal in ~35% of diagnosed individuals. The ongoing threat to global public health and the need for novel therapeutic countermeasures have driven the development of animal models that can reproducibly replicate the pathology associated with MERS-CoV in human infections. The inability of MERS-CoV to replicate in the respiratory tracts of mice, hamsters, and ferrets stymied initial attempts to generate small animal models. Identification of human dipeptidyl peptidase IV (hDPP4) as the receptor for MERS-CoV infection opened the door for genetic engineering of mice. Precise molecular engineering of mouse DPP4 (mDPP4) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology maintained inherent expression profiles, and limited MERS-CoV susceptibility to tissues that naturally express mDPP4, notably the lower respiratory tract wherein MERS-CoV elicits severe pulmonary pathology. Here, we describe the generation of the 288-330+/+ MERS-CoV mouse model in which mice were made susceptible to MERS-CoV by modifying two amino acids on mDPP4 (A288 and T330), and the use of adaptive evolution to generate novel MERS-CoV isolates that cause fatal respiratory disease. The 288-330+/+ mice are currently being used to evaluate novel drug, antibody, and vaccine therapeutic countermeasures for MERS-CoV. The chapter starts with a historical perspective on the emergence of MERS-CoV and animal models evaluated for MERS-CoV pathogenesis, and then outlines the development of the 288-330+/+ mouse model, assays for assessing a MERS-CoV pulmonary infection in a mouse model, and describes some of the challenges associated with using genetically engineered mice.


Asunto(s)
Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/genética , Modelos Animales de Enfermedad , Ratones/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Síndrome de Dificultad Respiratoria/virología , Animales , Sistemas CRISPR-Cas , Infecciones por Coronavirus/patología , Dipeptidil Peptidasa 4/metabolismo , Susceptibilidad a Enfermedades , Femenino , Ingeniería Genética , Humanos , Pulmón/virología , Masculino , Ratones Endogámicos C57BL , Síndrome de Dificultad Respiratoria/patología
18.
Methods Mol Biol ; 2099: 53-68, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1292546

RESUMEN

Over the past two decades, several coronavirus (CoV) infectious clones have been engineered, allowing for the manipulation of their large viral genomes (~30 kb) using unique reverse genetic systems. These reverse genetic systems include targeted recombination, in vitro ligation, vaccinia virus vectors, and bacterial artificial chromosomes (BACs). Quickly after the identification of Middle East respiratory syndrome-CoV (MERS-CoV), both in vitro ligation and BAC-based reverse genetic technologies were engineered for MERS-CoV to study its basic biological properties, develop live-attenuated vaccines, and test antiviral drugs. Here, I will describe how lambda red recombination can be used with the MERS-CoV BAC to quickly and efficiently introduce virtually any type of genetic modification (point mutations, insertions, deletions) into the MERS-CoV genome and recover recombinant virus.


Asunto(s)
Bacteriófago lambda/genética , Cromosomas Artificiales Bacterianos/genética , Infecciones por Coronavirus/virología , Genoma Viral/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Vacunas Virales/genética , Infecciones por Coronavirus/prevención & control , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Ingeniería Genética , Recombinación Homóloga , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Mutación , Vacunas Atenuadas/genética , Virus Vaccinia/genética
20.
Eur J Immunol ; 51(8): 1992-2005, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1251932

RESUMEN

The phenotype of infused cells is a major determinant of Adoptive T-cell therapy (ACT) efficacy. Yet, the difficulty in deciphering multiparametric cytometry data limited the fine characterization of cellular products. To allow the analysis of dynamic and complex flow cytometry samples, we developed cytoChain, a novel dataset mining tool and a new analytical workflow. CytoChain was challenged to compare state-of-the-art and innovative culture conditions to generate stem-like memory cells (TSCM ) suitable for ACT. Noticeably, the combination of IL-7/15 and superoxides scavenging sustained the emergence of a previously unidentified nonexhausted Fit-TSCM signature, overlooked by manual gating and endowed with superior expansion potential. CytoChain proficiently traced back this population in independent datasets, and in T-cell receptor engineered lymphocytes. CytoChain flexibility and function were then further validated on a published dataset from circulating T cells in COVID-19 patients. Collectively, our results support the use of cytoChain to identify novel, functionally critical immunophenotypes for ACT and patients immunomonitoring.


Asunto(s)
Minería de Datos/métodos , Citometría de Flujo/métodos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , COVID-19/sangre , COVID-19/inmunología , Citocinas/metabolismo , Ingeniería Genética , Humanos , Memoria Inmunológica , Inmunofenotipificación , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , SARS-CoV-2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA